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Understanding the relationship between symmetry breaking, system properties, and

instabilities has been a problem of longstanding scientific interest. Symmetry-breaking

instabilities underlie the formation of important patterns in driven systems, but there are

many instances in which such instabilities are undesirable. Using parametric resonance as a

model process, here we show that a range of states that would be destabilized by symmetry-

breaking instabilities can be preserved and stabilized by the introduction of suitable system

asymmetry. Because symmetric states are spatially homogeneous and asymmetric systems

are spatially heterogeneous, we refer to this effect as heterogeneity-stabilized homogeneity.

We illustrate this effect theoretically using driven pendulum array models and demonstrate it

experimentally using Faraday wave instabilities. Our results have potential implications for

the mitigation of instabilities in engineered systems and the emergence of homogeneous

states in natural systems with inherent heterogeneities.
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The mitigation of dynamical instabilities is an outstanding
problem in diverse areas of science and engineering, ran-
ging from fluid turbulence1, ecosystem collapses2, and

cascading failures3 to financial crashes4 and resonances in
architectural structures5,6. While progress has been made7,8, the
fundamental question of how the properties of a complex system
relate to the emergence of instabilities remains largely open. As a
result, our ability to mitigate instabilities in such systems remains
limited. The problem of preventing instabilities is akin to the
problem of stabilizing a desired dynamical state. Of special
interest are states that have certain symmetries, such as transla-
tional symmetry, time invariance, and permutation symmetry9.
For example, an initially planar elastic membrane may become
undulated if driven by a uniform transverse periodic force
(Fig. 1a). The question of interest in this case is how to prevent
this instability and preserve the fully translationally symmetric
state so that the membrane remains flat while driven. For a broad
class of systems of interest, symmetric states are guaranteed to
exist if the system itself has the same symmetries, but herein lies
the rub (and the opportunity): sufficient conditions for the exis-
tence of a state are usually neither sufficient nor necessary for the
state to be stable.

In this Article, we establish an innovative approach to prevent,
delay, or manipulate the onset of symmetry-breaking instabilities
in driven complex systems. The approach is based on the reali-
zation that states of interest can be preserved and stabilized by
breaking the symmetry of the system through the introduction of
temporally fixed spatial heterogeneities (even when spatial
averages are constrained to remain unchanged), as illustrated in
Fig. 1b. The underlying phenomenon can be naturally interpreted
as the emergence of heterogeneity-stabilized homogeneous states
(HSHS). We show that for parametrically-driven systems in
particular, the introduction of constrained but appropriately
designed heterogeneity provides a general means to stabilize
homogeneous states for a wide range of parameter values.
Because such homogeneous states emerge without the need for
feedback control, HSHS can be exploited to design non-feedback
control for complex systems, which has attracted interest in the
past for the potential to suppress chaos10. In the broader context
of pattern-forming systems11–13, the introduction of disorder
other than heterogeneity, such as some forms of noise, has been
previously shown to both inhibit instabilities14,15 and create
multistability16,17. Heterogeneity has also been shown to create
multistability18,19 and to shift instability boundaries20,21, but the
potential for heterogeneity to stabilize homogeneous states has
not been previously recognized.

We demonstrate HSHS in two paradigmatic systems. First, we
theoretically analyze a driven pendulum array model in order to
illustrate the following general mechanism for the generation of
HSHS. The introduction of heterogeneities can create a band gap
in the dispersion relation, which follows from the different ways

in which the short- and long-wavelength modes are impacted by
heterogeneity. This band gap creates a region of the driving
amplitude vs. driving frequency parameter space with no modes
that can be resonantly excited by the driving, leading to a stabi-
lization of the homogeneous state in this region. We then turn to
the demonstration of HSHS in Faraday wave instabilities, which
are important in their own right and are representative of a large
class of instabilities in driven systems22,23. Faraday waves are
standing waves that emerge on the surface of a liquid in a ver-
tically vibrating container. They appear above threshold values of
driving frequency and amplitude that mark the instability
boundary where the flat fluid surface becomes unstable. Faraday
wave experiments are usually performed using a flat substrate for
the bottom of the container, which guarantees that the system is
spatially homogeneous and thus has translational symmetry (up
to boundary effects). This symmetry is spontaneously broken by
the standing waves that are created by parametric resonance
above the instability boundary. We consider how Faraday
instabilities are impacted by symmetry-broken geometries,
defined by heterogeneous (i.e., non-flat) substrates. Past studies
have considered the possibility of localization resulting from
small corrugations in the container24–26 or through localized
driving forces27, but we stress that the potential for HSHS has not
been considered in this literature. Here, we show how hetero-
geneity from more general substrate geometries can impact the
onset of Faraday wave instabilities, which allows us to experi-
mentally demonstrate the existence of HSHS for both sinusoidal
and random substrates with suitably large heterogeneity.

Results
Mitigating instabilities in a model system. It is instructive to
first consider an instability in a discrete model system consisting
of an array of identically-coupled identical pendula, as shown in
Fig. 2a (blue). Each pendulum in this model experiences grav-
itational forces and is coupled to its nearest neighbors via linear
springs. We employ periodic boundary conditions, so that the
system is completely symmetric with respect to translations by
one lattice site. Similar models of coupled oscillators have been of
recent interest in the study of classical time crystals28–30. When
the system is driven by a vertical vibration, defined by a driving
frequency ωd and a driving amplitude ad, symmetry is sponta-
neously broken and the pendula start to swing sideways as the
driving frequency and/or amplitude is increased above an
instability boundary.

To understand how to mitigate this instability, we first focus on
the homogeneous system in the absence of driving. In this case,
the dispersion relation, which describes the response frequency ω
as a function of the wavenumber k, can be used to decompose
general disturbances into wave modes (see “Methods”). The
dispersion relation for the homogeneous pendulum array (blue

Fig. 1 Conceptual illustration of heterogeneity-stabilized homogeneous states. a A homogeneous membrane driven by a vertical vibration undergoes a
symmetry-breaking instability, resulting in an inhomogeneous (undulated) state. b Introducing heterogeneity in the membrane (represented here by the
color) stabilizes the homogeneous (planar) state. The boundary conditions are periodic.
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line in Fig. 2b) consists of two branches corresponding to,
respectively, short- and long-wavelength modes, which merge at
k= π/2 for an array of N pendula with pivots equally spaced
horizontally (the number of pendula is assumed to be even to
facilitate our subsequent analysis for unit cells of size two). When
the system is driven at a frequency ωd, on the other hand, the
instability boundary of the (steady) homogeneous state can be
determined through a generalized eigenvalue problem for the
critical driving amplitude a �

d ,

∑
ν

~Aμν
~θν ¼ a �

d ∑
ν

~Bμν
~θν ; ð1Þ

where ~θν are Floquet mode amplitudes and ~Aμν and ~Bμν are
matrices encoding the linearized dynamics (see “Methods”). For
driving amplitudes above the critical value, the swinging motion
of the pendula that results from spontaneous symmetry breaking
is decomposed (according to the driving frequency) into
excitations of individual modes in the dispersion relation of the
undriven system. These instabilities are subharmonic31 and
correspond to the wave modes oscillating at one half the driving
frequency, which are marked as dots for N= 32 in Fig. 2b.

We propose that such instabilities can be mitigated by
introducing spatial heterogeneity. This follows from two
observations. First, when the dispersion relation has no resonant
wave modes (corresponding to half the driving frequency), larger
driving amplitudes are required to create instabilities induced by
exciting nonresonant modes. Thus, we expect that a general
approach to mitigate instabilities will be by shifting the instability
boundary through the creation of band gaps in the dispersion
relation, where modes are not easily excited. Second, we note that
given a particular length scale, the dispersion relation can be
naturally divided into wave branches whose dynamics differ from
each other on that scale. In the homogeneous system, these wave
branches meet at points of degeneracy. When heterogeneity of
that length scale is introduced, the branches will tend to respond
differently and the degeneracies will be lifted, effectively creating
band gaps by separating the branches. As we show explicitly for
one-dimensional lattices in “Methods”, this band gap opening
mechanism is generic for periodic heterogeneity and provides a
systematic means to introduce desirable band gaps through

tunable heterogeneities. We suggest that the method that results
from combining these two observations is applicable to
parametric instabilities in general.

We can now demonstrate this approach in the pendulum array
model by introducing temporally fixed heterogeneity in the
lengths of the pendula. We implement heterogeneity by spatially
varying the height of the support ceiling while keeping the rest
position of the pendulum bobs leveled. To avoid conflating
effects, everything else is kept unchanged (including the average
length of the pendula). We consider both periodic and random
configurations of pendulum lengths, as shown in Fig. 2a (orange
and green, respectively). The system’s translational symmetry is
partially broken for the periodic configuration and fully broken
for the random one. As shown in Fig. 2b (color coded as in
Fig. 2a), these heterogeneities open band gaps in the dispersion
relation, which is gapless in the homogeneous case. While we
have introduced heterogeneity in the pendulum lengths to
motivate our subsequent Faraday wave experiments, general
considerations of wave-lattice interactions imply that a band gap
will appear generically in periodic configurations regardless of
how the heterogeneity is implemented (see “Methods”). As an
application of this general result, we show that heterogeneity in
the masses of the bobs is also capable of stabilizing homogeneous
states in a driven pendulum array (see Supplementary Discus-
sion 1 and Supplementary Fig. 1).

The orange and green lines in Fig. 2c, d show the instability
boundaries predicted from the Floquet analysis defined by Eq. (1),
with the dashed blue lines showing the corresponding boundary
for the flat configuration. The shaded areas between the curves
mark the HSHS regions, where the system is stabilized by the
heterogeneity. Unlike previous studies focused on exploring the
balance between two controllable asymmetries to restore features
of symmetry breaking32 or on suppressing chaos in favor of
symmetry-broken periodic states33, here the band gap created by
appropriate heterogeneity suppresses the parametric instability,
resulting in a homogeneous steady state. The instability
suppression occurs for driving frequencies around ωd/2=
1.75 since the instabilities are subharmonic and the band gap
opening is around ω= 1.75. This opening is determined by the
heterogeneity magnitude and length scale, and it can be

Fig. 2 Heterogeneity-stabilized homogeneous states in arrays of coupled pendula. a Arrays of coupled pendula with homogeneous support (top),
periodic support (middle), and random support (bottom). b Angular frequency ω vs. wavenumber k in the dispersion relation, where the color-
corresponding dots show modes for the respective arrays in a and the lines serve as a guide to the eye suggestive of the infinite-pendulum limit. The
heterogeneities open a band gap at k= π/2 around ω= 1.75. c, d Instability boundaries in the driving amplitude ad vs. driving frequency ωd space for the
periodic support (c) and the random support (d), with swinging wave motion emerging above the solid lines and with the dashed lines marking this
boundary in the homogeneous case. The arrows in c, d indicate how instability tongues move in response to the band gap opening, leading to HSHS in the
shaded areas. Animations of the pendulum arrays in a are available in Supplementary Movie 1.
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manipulated by varying these parameters. The areas below the
instability boundaries for the periodic and random case in Fig. 2c,
d are thus larger than for the homogeneous case (by 28.7% and
30.4%, respectively). In both cases, the results confirm our
hypothesis that the band gap opening leads to stabilization of
homogeneous states by moving apart subharmonic instability
tongues near the band gap. We also note that the random case has
an even larger gap (and hence, a larger region of HSHS) than the
periodic case for the same magnitude of heterogeneity. An
analogous band-gap widening effect has been recently reported in
the design of metamaterials with spatial disorder34. Altogether,
these results illustrate that band gaps emerging from both
periodic and non-periodic heterogeneities can influence the
instability boundaries in the driven system, leading to HSHS in
a large portion of parameter space.

In addition to stabilizing homogeneous states, the introduction
of heterogeneity can have other consequences for the dynamics of
the driven pendulum array. We find that while a homogeneous
array exhibits either a steady homogeneous or a swinging stable
state (depending on the driving frequency and amplitude),
heterogeneous arrays can also exhibit multistability for some
driving parameters. Within parts of the region of HSHS, it is
possible for finite-size perturbations to excite the steady
homogeneous state into states with localized swinging motion,
in which the swinging motion is mostly confined to a few
neighboring pendula (see Supplementary Movie 1). Such states
have been shown to appear in connection with band gaps in other
systems and are known as gap solitons35. These gap solitons
coexist with the homogeneous state in the heterogeneous
pendulum array, but we find that large perturbations are required
to excite them (see Supplementary Discussion 2 and Supplemen-
tary Fig. 2).

Demonstrating HSHS in a fluid experiment. We now turn to
the demonstration of HSHS in Faraday instabilities, which we
recall are characterized by the emergence of standing waves on
the surface of fluid-filled containers driven by vertical vibrations.
Similarly to the case of the pendulum array model, these
instabilities occur when the system is driven above an instability
boundary in the driving amplitude ad vs. driving frequency fd
parameter space (here we use frequencies f rather than angular

frequencies ω to facilitate comparison with the experiments). To
implement the heterogeneity, we consider containers with rec-
tangular cross sections and with spatially varying depths. In all
containers, we maintain an identical cross section and an iden-
tical total volume of fluid.

In order to design our experiments, we first model and
simulate HSHS for the Faraday instability. For simplicity, we
assume the fluid is incompressible and inviscid, which adequately
describes experiments with water, although our analysis can be
extended to include viscid effects36. Our experiments below are
conducted using water in containers measuring 4 cm in length by
1 cm in width and with an average depth of 0.5 cm. The onset of
instability in these large-aspect-ratio containers can be approxi-
mated using a one-dimensional model (of the same length and
depth) with periodic boundary conditions. The use of periodic
boundary conditions is desirable in order to show that the effect
does not result from asymmetries caused by the end walls (and
below we also show that the effect persists for other boundary
conditions). For periodic boundary conditions, the eigenvalue
problem analogous to Eq. (1) for Faraday instabilities derived
from the Navier-Stokes equations is

∑
ν

~Cμν
~hν ¼ a �

d ∑
ν

~Dμν
~hν ; ð2Þ

where ~hν is a Floquet-Fourier mode amplitude and ~Cμν and ~Dμν

are linearization matrices. The additional Fourier decomposition
in this analysis, not present in the pendulum array case, arises
because the spatial variables must be converted to discrete modes
to carry out the Floquet analysis (see “Methods”).

Figure 3 shows the results of simulations of the fluid system for
various substrate shapes. We compare the flat substrate to a
sinusoidal substrate with wavenumber ks and amplitude as, as
shown in Fig. 3a for ks= 3π/2 cm−1 and as= 0.4 cm. The blue
and orange lines in Fig. 3b show the instability boundary for these
substrates, as determined by Eq. (2). While most of the
instabilities are subharmonic, small harmonic instability tongues
(corresponding to oscillations at the same frequency as the
driving) protrude for specific driving frequencies, which are
shown by the dotted lines. The instability boundaries (both
harmonic and subharmonic) determined by Eq. (2) agree exactly
with those determined through direct finite element simulations
(see “Methods”), which confirms the consistency of our analysis.

Fig. 3 Faraday instabilities in one dimension with periodic boundary conditions. a Flat (blue) and sinusoidal (orange) substrate geometries. b Instability
boundaries in the driving amplitude vs. driving frequency space for the color-corresponding substrates in a showing the subharmonic (continuous lines)
and harmonic (dotted lines) instability boundaries as well as the resulting HSHS region (shaded area). c Frequency vs. wavenumber in the dispersion
relation for the substrates in a (dots) and for the respective infinite-length systems (lines). d Frequency gap Δfg and mean frequency �fg of the modes at the
band gap as a function of the substrate wavenumber ks, showing wavenumbers that meet periodic boundary requirements for the substrates shown in a
(dots). e Substrate geometries with evenly (green) and randomly (red) spaced sharp peaks. f Instability boundaries as in b for the flat substrate in a and the
sharp-peak substrates in e.
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The shaded area in Fig. 3b corresponds to HSHS, indicating that
substrate heterogeneity can indeed stabilize Faraday instabilities
in a large portion of the parameter space. The heterogeneous
geometry in Fig. 3a has a fluid layer of 1 mm between the
substrate peaks and the undisturbed fluid surface, which is
adequate for the wavelength modes considered to be significantly
affected by substrate heterogeneity given that the dispersion
relation depends exponentially on the minimum fluid thickness
(see “Methods”). We have checked, however, that the observed
HSHS are not a result of simple compartmentalization of the fluid
between successive peaks of the substrate by considering
substrates defined by an equal number of sharp peaks with the
same minimal fluid thickness for the same fluid volume (Fig. 3e,
f). Importantly, sharp peaks do a substantially poorer job of
stabilizing the flat surface than a sinusoidal substrate, and the
result is largely independent of the positions of the peaks.

While we focus on specific substrates in our experiments, we
note that the same results follow for containers with different
lengths and different ks. Figure 3c shows the dispersion relation
for systems of infinite length with the same ks as in Fig. 3a. For
the finite-length system we consider, the first two excited modes
(dots in Fig. 3c) lie on different branches and are further
separated as the gap opens, leading to the observed HSHS. This
effect persists for containers of arbitrarily large length, since there
are no modes available that can be easily excited within the band
gap. The harmonic instabilities in Fig. 3b (dotted lines), on the
other hand, do not occur at the instability onset for flat substrates
in sufficiently long containers. Instead, subharmonic instabilities
of longer wavelength (which would not fit within the 4 cm
bounded container) occur at lower driving amplitudes unless the
system is driven by non-sinusoidal vibrations37. For the
sinusoidal substrate, however, the harmonic instabilities can
persist for sinusoidal vibrations even in the infinite length limit
since the subharmonic modes become difficult to excite near the
band-gap frequency. As the substrate wavenumber varies, the
position and size of the band gap vary as well. Figure 3d shows
the frequency gap Δfg and the mean frequency �f g for the band gap
at k= ks/2 as a function of ks. Shorter substrate wavelengths
correspond to a band gap (and thus to HSHS) at higher
frequencies, with the largest band gap appearing for ks/2π ≈ 1.4.

Having established these theoretical predictions, we now assess
them experimentally. We consider flat and sinusoidal substrates
as well as randomly generated substrate shapes representing more
general heterogeneities. Because larger frequencies are more easily
accessible in experiments, we used a larger substrate wavenumber
of ks/2π= 1 cm−1 for the sinusoidal substrate (see “Methods”).
For the random substrates, the parameter space of substrate
heterogeneities is very large—infinite, in fact. To generate random
substrates, we sample this space by taking the Fourier coefficients
of the first 12 modes as random Gaussian variables (with the
mean inversely proportional to the Fourier index). We then
employed the width of the range of stabilized frequencies between
10 Hz and 14 Hz for a fixed driving acceleration of ad ´ ð2πf dÞ2 ¼
0:8g as a computationally affordable proxy for the stabilized area
in the driving amplitude vs. driving frequency space (g= 9.8 m/s2

is the gravitational acceleration). We optimized this value over
500 randomly generated substrates to select the random substrate
used in experiments. The flat substrate, the sinusoidal substrate,
and the selected random substrate were then 3D printed to use in
our experiments (see “Methods”).

Figure 4a shows the instability boundaries for these substrates,
as determined by our experiments (and in agreement with our
numerical predictions). The experiments reveal a large region of
HSHS in which the flat surface is stable for the sinusoidal or
random substrates but not for the flat substrate, as indicated by

the shaded area in the driving amplitude vs. driving frequency
space. Snapshots of the HSHS are shown in Fig. 4b–c. While the
selected random substrate stabilizes a slightly smaller region than
the sinusoidal one, we do not expect the sinusoidal case to be
generally optimal in terms of the area of the stabilized region,
given that this is not the case for the pendulum system. Still, the
selected random heterogeneity stabilizes a large portion of
parameter space and demonstrates that this effect is not specific
to sinusoidal or approximately periodic substrates. These
experiments clearly show that the band gap opening mechanism
behind HSHS is general and robust enough to be observed in
realistic systems.

Discussion
Our demonstration of scenarios in which parametric instabilities
can be mitigated by introducing heterogeneity reveals a new
phenomenon in complex spatiotemporal systems. The mechan-
ism giving rise to this phenomenon stems from the formation of a
band gap in the dispersion relation, which produces a shifting of
the instability tongues in parameter space. Our Faraday wave
experiments explicitly show that the band gap opening that leads
to the desirable stabilization of homogeneous states can indeed be
implemented with the introduction of appropriately designed
system heterogeneity. These results show the existence of
homogeneous states that not only persist in spite of heterogeneity
but are also promoted by it.

The emergence of HSHS is also intimately related to the con-
cept of symmetry. It shows that unstable symmetric states may
continue to exist and, most importantly, become stable when the
corresponding symmetry of the system itself is explicitly broken.
This phenomenon can thus be interpreted as an analog in con-
tinuous media of scenarios in which stable synchronization
requires system asymmetry38 recently observed in discrete sys-
tems, and which have been proposed to emerge from network
interactions39,40. Our results establish that this previously
unrecognized symmetry phenomenon occurs in continuous
media and can be used to suppress parametric instabilities. This
work also contributes a new insight into the broader literature on
the relation between disorder and pattern formation, which has
included studies ranging from Anderson localization41 to the
impact of disorder10 and impurities42,43 on spatiotemporal chaos
and soliton dynamics. Ultimately, our results demonstrate a new
approach to suppress instabilities in parametrically driven media
by manipulating system parameters. Such an approach is mate-
rially different from prior efforts to prevent instabilities based on
the explicit control of the system variables, which is often limited
by one’s ability to actuate the required variables in real time.

We suggest that the HSHS effect has the potential to be a
general phenomenon occurring in other systems undergoing
instabilities due to mode excitation. In those systems too, we
expect to have the opportunity to suppress instabilities through
the manipulation of band gaps created by the introduction of
heterogeneity. For example, complex instabilities are known to
emerge in driven elastic membranes44, but elastic composites with
periodic heterogeneity have been shown to exhibit band gaps45,
which our results suggest could be designed to mitigate these
instabilities. Importantly, this approach can benefit from previous
studies on creating and manipulating band gaps for different
purposes, including the literature on topological edge states in
both discrete systems46–48 and continuous media35,49. The
broader implications of this work for future studies include the
modeling of heterogeneity in natural systems, such as in
describing its coevolution with homogeneous states, and the
mitigation of instabilities in experimental and man-made
systems.
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Methods
Pendulum array theory and numerics. The state of each pendulum in the array is
described by the angle θi with the vertical direction, where 1 ≤ i ≤N is the pen-
dulum index. In the accelerated reference frame of the moving ceiling, the equa-
tions of motion are

MLi€θi ¼� ηLi _θi �M g � adω
2
d cosðωdtÞ

� �
sinðθiÞ

þ κLiþ1 sinðθiþ1 � θiÞ þ κLi�1 sinðθi�1 � θiÞ
þ κ Liþ1 þ Li�1 � 2Li

� �
sinðθiÞ;

ð3Þ

where t is time, overdots denote time derivatives, M is the pendulum mass, Li is the
length of the ith pendulum, κ is the spring constant (springs are assumed to have
zero unstretched length), g is the gravitational constant, η is the damping coeffi-
cient, ωd= 2πfd is the angular frequency of the vertical vibration, and ad is the
amplitude of the vibration. The pendulum lengths are defined as Li ¼ L for the
homogeneous support and Li ¼ Lþ ð�1ÞiΔ for the periodic configuration. We call

the average square deviation of the pendulum lengths, h Li � L
� �2i, the hetero-

geneity magnitude, which in this case reduces to Li � L
� �2 ¼ Δ2. For the random

case, Li ¼ Lþ δi for δi sampled from a uniform distribution with mean ð�1ÞiΔ0

and variance γ2 Δ0ð Þ2=3, where Δ0 � Δ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2=3

p
. This distribution guarantees

that the average pendulum length remains unaltered (i.e., hLii ¼ L) and that the
heterogeneity magnitude is the same as in the periodic support (i.e.,

h Li � L
� �2i ¼ Δ2). In our simulations, we take N= 32, L ¼ 1, γ= 0.5, and Δ=
0.35 and assume that all quantities are nondimensionalized.

We linearize the equations of motion using the Floquet ansatz

θi ¼ est ∑
m
θ̂ime

jmωd t ; ð4Þ

where θ̂im are Fourier mode amplitudes, s= β+ jωdϵ is the Floquet exponent with
growth rate β and response frequency ratio ϵ= ω/ωd, and j is the imaginary unit.
Inserting Eq. (4) into Eq. (3) results in

∑
i
∑
m
Aim
jn θ̂im ¼ ad ∑

i
∑
m
Bim
jn θ̂im; ð5Þ

where

Aim
jn ¼Lj �Mω2

dðsþ nÞ2 þ jωdηðsþ nÞ þ 2κ
� �

δijδ
m
n

� κLjþ1δ
i
jþ1 þ κLj�1δ

i
j�1 �Mgδij

h i
δmn ;

ð6Þ

Bim
jn ¼ M

2
ω2
d δmnþ1 þ δmn�1

� �
δij; ð7Þ

and δij is the Kronecker delta. The integers i and j run over the pendulum indices
with periodic boundary conditions, while n and m run over the Floquet modes. We
map indices μ 2 Z and ν 2 Z to pairs of indices ðiðμÞ;mðμÞÞ 2 Z2 and
ðjðνÞ; nðνÞÞ 2 Z2 using any convenient bijection from Z to Z2 to define
~Aμν � AiðμÞmðμÞ

jðνÞ nðνÞ , ~Bμν � BiðμÞmðμÞ
jðνÞ nðνÞ , and

~θμ � θ̂iðμÞmðμÞ. Because the problem in the
undriven case becomes diagonal in the Floquet space, we can set n=m= 0 and
consider the spectrum of Ai0

j0 to determine the dispersion relation numerically for
any configuration of pendulum lengths. In the periodic case, the translational
symmetry implies that the eigenfunctions will be sinusoidal in space with

wavenumber k, resulting in an analytic expression for the dispersion relation given
by

�Mω2 þ jηωþ 2κþ Mg
Δþ1

2κð1�ΔÞ cos k
Δþ1

2κðΔþ1Þ cos k
1�Δ �Mω2 þ jηωþ 2κþ Mg

1�Δ

�����
����� ¼ 0; ð8Þ

where ∣ ⋅ ∣ is the determinant.
To derive (1) for the instability boundary in the presence of driving, we set the

growth rate to β= 0 and the acceleration to the critical value a �
d in Eq. (5) for a

specified frequency ratio ϵ. The critical driving amplitude is then given by the
smallest solution to the generalized eigenvalue problem for each driving frequency,
which is found numerically by truncating after the first 7 Floquet modes, so that
−3 ≤ n,m ≤ 3. The frequency ratio can be constrained to the first Brillouin zone
−1/2 ≤ ϵ ≤ 1/2, since changes in the response frequency ω= ϵωd by a multiple of ωd

can always be absorbed into the coefficients θ̂im . We can thus set ϵ= 0 and ϵ= ±1/
2 to find all harmonic and subharmonic instabilities, respectively, as there are no
real eigenvalue solutions a �

d for other ϵ (but note that anharmonic instabilities with
irrational ϵ can occur in other cases30). We note that for the homogeneous system
(and non-generically for heterogeneous systems), translationally invariant
instabilities in the form of homogeneous swinging states can occur by exciting the
steady homogeneous state for k= 0. Such states emerge from symmetry breaking
instabilities of the time translational invariance instead and, thus, when accounting
for all symmetries, they are not considered to constitute HSHS. Owing to fluid
incompressibility, no time-dependent homogeneous states can occur in our
Faraday instability experiments.

The Floquet analysis was verified to agree with direct numerical integration of
Eq. (3) performed using the Mathematica implementation of the LSODA adaptive
time-stepping, stiffness-switching integrator. In these simulations, the Euclidean
norm of the vector of angles θi is fit in time to determine the growth rate β and the
instability frequency ω is extracted by examining the peaks in the Fourier
transform of the de-trended norm.

Band gaps in more general models. Here we generalize the mechanism for HSHS
in parametrically-driven systems by describing how periodic heterogeneities of
arbitrary form lead to the formation of band gaps in general extended systems with
periodic boundary conditions. Crucially, by employing a parameterization of wave
modes that correctly reflects the reduced symmetry of the heterogeneous system,
the dispersion relation divides itself naturally into branches that meet at degenerate
points. These branches are distinguished from each other by the dynamics of the
modes in the homogeneous system over the length scale defined by the hetero-
geneity. In the presence of the heterogeneity, the branches respond differently, and
the degeneracies are generically lifted. The latter underlies the formation of band
gaps in the dispersion relation.

For concreteness, we focus on the onset of small-amplitude waves in one-
dimensional lattice models with arbitrary short- and long-range coupling, but the
following arguments imply the opening of band gaps at critical points of the first
Brillouin zone more generally. We consider linear second-order models given by

M€ψn þ η _ψn þ ∑
N

m¼1
Gnmψm þ λΔn fψj; _ψj; €ψjgNj¼1

� 	
¼ 0; ð9Þ

where ψn for n= 1, 2,⋯ ,N is a state variable at each lattice site, M is a mass
parameter, η is a damping parameter, Gnm denotes the elements of a coupling
matrix, and λΔn describes a spatial heterogeneity with overall amplitude λ. We take

Fig. 4 Heterogeneity-stabilized homogeneous states in Faraday instability experiments. a Experimental instability boundaries in the driving amplitude
vs. driving frequency space for the flat substrate (blue), the sinusoidal substrate (orange), and the selected random substrate (green), as indicated by the
corresponding colors insets. The error bars show the standard error from 4 measurements of the critical driving amplitude at each frequency, and the
shaded area indicates parameters for which the shifting of the instability tongues leads to HSHS. b, c Numerical (b) and experimental (c) snapshots for
HSHS for the three substrates (corresponding substrates are marked by the same color). The columns in b, c correspond to the driving parameters marked
by the circle (left), the triangle (middle), and the diamond (right) in a. Videos of the experiments in c are available in Supplementary Movie 2.
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the translational-invariance assumption that the components of the coupling
matrix depend only on the distance ‘ ¼ minðn � mmodN; m � nmodNÞ
between the lattice points, i.e., Gnm=G(ℓ) for some function G, which implies that
the system is homogeneous for λ= 0. The linear form of Eq. (9) for λ= 0 suggests
decomposition of the solution into wave modes. In such a homogeneous case, the
translational-invariance assumption guarantees that the wave modes are given by
ψn ¼ eβ0 tþjω0 tejqn , parameterized by a wavenumber q ∈ [− π, π]. The frequency
ω0(q) and growth rate β0(q) of each mode in the homogeneous system are given by
the dispersion relation Mðβ0ðqÞ þ jω0ðqÞÞ2 þ ηðβ0ðqÞ þ jω0ðqÞÞ þ bGðqÞ ¼ 0, wherebGðqÞ ¼ Gð0Þ þ 2∑bN=2c

‘¼1 cosðq‘ÞGð‘Þ is the Fourier transform of the coupling
function.

We next consider the impact of heterogeneities of the form

Δn ¼ ∑
m

M0
nm€ψm þ η0nm _ψm þ G0

nmψm

� �
; ð10Þ

and we take the heterogeneity as a small perturbation in Eq. (9) (i.e., λ≪ 1). For
simplicity, we assume that the heterogeneity possesses a coarser translational
invariance than the original problem. In particular, let Tm

n ¼ δmnþNh
denote the

components of the linear operator that translates the system by Nh lattice points,
where δmn is the Kronecker delta. We assume that M0

nm , η
0
nm , and G0

nm all commute
with Tm

n , so that there are Nh sites in the unit cell of the heterogeneous system. The
translational symmetry of Eq. (10) implies that we can find wave modes for Eq. (9)
that simultaneously diagonalize Tm

n , which has eigenvalues ejqNh and corresponding
eigenvectors vq with components vqn ¼ ejqn .

We now determine perturbative frequencies and growth rates of the wave
modes in Eq. (9). Note first that the translational invariance of the homogeneous
system implies that ω0(q) and β0(q) are even functions. Thus, the modes given by q
and −q are degenerate in frequency and growth rate. However, the corresponding
eigenvalues of Tm

n , namely e± jqNh , are distinct unless qNh mod π ¼ 0. It follows that
for qNh mod π≠0, the q and −q modes cannot mix and nondegenerate
perturbation theory can be applied. Thus, the frequency ω and growth rate β are
perturbed continuously as functions of q according to
βðqÞ þ jωðqÞ ¼ β0ðqÞ þ jω0ðqÞ þ λDðqÞ, where D is determined by nondegenerate
perturbation theory. On the other hand, degenerate perturbation theory must be
applied when qNh mod π ¼ 0, which will mix the modes. The leading order
perturbation in the degenerate case is
βðqÞ þ jωðqÞ ¼ β0ðqÞ þ jω0ðqÞ þ λðDðqÞ±

ffiffiffiffiffiffiffiffiffiGðqÞp
Þ, where D and G are now

determined by degenerate perturbation theory. Thus, heterogeneity will lift the
degeneracy in the frequencies and growth rates, giving rise to a discontinuous jump
of 2

ffiffiffiffiffiffiffiffiffiGðqÞp
as a function of q, which will in general correspond to a band gap. The

wavenumber q does not reflect the symmetry of the heterogeneous system, since
different values of q can lead to identical eigenvalues for Tm

n . The wavenumber
k � ðqNh mod πÞ=Nh, on the other hand, does account for this symmetry and is the
parameterization that we employ throughout. Under this parameterization, the
dispersion relation consists of Nh wave branches that differ according to the mode
dynamics within the Nh-unit cell and that separate from each other when the
degeneracy is lifted. Band gaps will appear generically for frequencies between the
branches (except potentially for the anomalous case of a nonmonotonic dispersion
relation function ω0(q)).

When the system is parametrically driven with a driving frequency ωd and
amplitude ad, the growth rate β will increase rapidly with increasing ad for modes
with frequencies ω= ωd/2 that are resonant with the driving. For driving
frequencies corresponding to twice the frequencies within a band gap, no resonant
modes exist and larger driving amplitudes are required to induce instabilities (i.e.,
to turn β positive for a nonresonant mode), resulting in HSHS.

Faraday instability theory and numerics. We use Cartesian coordinates, with (x,
y) for the horizontal plane and z for the vertical axis, and consider a fluid filling a
container up to a height of h0 when undisturbed. Given a surface deflection h for
each (x, y), the surface is then located at z ¼ h0 þ ad sinðωdtÞ þ h when driven by a
vertical vibration. The surface deflection h along with the fluid velocity (ux, uy, uz)
and the pressure P at each point (x, y, z) completely specify the state of the system.

For simplicity, we assume the fluid is inviscid and incompressible. The
undisturbed surface solution is given by ux= uy= 0, uz ¼ adωd cosðωdtÞ, P=−gz,
and h= 0. This is always a solution to the fluid equations of motion, and the
question to be considered is the stability of this solution. Deviations from the
undisturbed surface solution are described by velocity potential ϕðx; y; z0; tÞ, where
we have changed to an accelerated reference frame given by z0 ¼ z þ ad sinðωdtÞ.
The velocity potential satisfies the Laplace equation with Dirichlet boundary
conditions specified by a function ζ(x, y, t) on the free surface, which is located at
z0 ¼ h0 þ hðx; y; tÞ. For points x ¼ ðx; y; z0Þ at the substrate bottom or at the side
walls (which we denote as the set Ω), the velocity potential satisfies Neumann
boundary conditions. Thus, the equations determining the velocity potential are

∇2ϕ ¼ 0; ϕ
��
z0¼h0þh

¼ ζ; and n̂ � ∇ϕ
��
x2Ω ¼ 0; ð11Þ

where n̂ is the unit normal vector pointing outward from the fluid and into the
solid surfaces. The evolution of ζ follows from the Bernoulli equation for inviscid

flows

∂tζ ¼
σ

ρ
∇ � n̂� g � adω

2
d cosðωdtÞ

� �
h

� 1
2
∇ϕ
�� ��2 � ∂z0ϕ∂th


 �����
z0¼h0þh;

ð12Þ

where ρ is the fluid density and σ is the surface tension. The evolution of the surface
height h, on the other hand, is determined by the kinematic equation

∂th ¼ ∂z0ϕ� ∇ϕ � ∇h� ν1hþ ν2∇
2h

� ���
z0¼h0þh

; ð13Þ
where the term − ν1h+ ν2∇2h is included in order to mimic the neglected viscosity
and regularize the numerics. The values of the damping parameters ν1 and ν2 are
chosen to fit the experimental instability boundaries. The damping in experiments
is dominated by the contact line pinning and cannot be easily predicted, so initial
calibration experiments were run to estimate these parameters. The critical
frequencies and accelerations for the three tongues in Fig. 4a were measured, and
the values ν1= 2.0 Hz and ν2= 0.1 cm2/s were found to give satisfactory fits. Since
these damping parameters are expected to vary with the experimental setup and are
likely not accurate outside of the given frequency range, these empirical estimates
are considered adequate for our purposes. Equations (12)–(13) are integrated
numerically, where ϕ is computed from moving mesh finite element solutions of
Eq. (11) each time step using the FEniCS package in Python50. In these
simulations, we implemented two- and three-dimensional rectangular geometries
for both periodic boundary conditions and pinned-contact-line boundary
conditions. The substrate shapes in all cases can be specified as flat, periodic, or
random.

As in the analysis of the pendulum array model, for the flat and sinusoidal
substrates with periodic boundary conditions, the linearized equations of motion
can be reduced to an eigenvalue problem, albeit a more complicated one in this
case. This is accomplished by taking the Floquet-Fourier ansatz

ϕ ¼ ejðkxþstÞ ∑
i
∑
m
ϕ̂ime

jiksxþjmωd t ; ð14Þ

ζ ¼ ejðkxþstÞ ∑
i
∑
m
ζ̂ ime

jiksxþjmωd t ; ð15Þ

h ¼ ejðkxþstÞ ∑
i
∑
m
ĥime

jiksxþjmωd t ; ð16Þ

where we recall that ks is the substrate wavenumber and as is the substrate
amplitude. Projecting the equations onto the Floquet-Fourier modes, and
employing the integral representation of the Bessel function
JiðjwÞ ¼ 1

2π

R π
�π e

jiτþw sin τdτ, we obtain the linear form

∑
i
∑
m
Cim
jn ĥim ¼ ad ∑

i
∑
m
Dim
jn ĥim ð17Þ

after eliminating ϕ̂im and ζ̂ im . The tensor elements in Eq. (17) are given by

Cim
jn ¼ e�κih0 �ðsþmωdÞ2 þ jðsþmωdÞðν1 þ κ2i ν2Þ

�
�κi g þ σ

ρ
κ2i

 ��
´ Ji�jðjκiasÞ �

jksas
2

�

´ Ji�jþ1ðjκiasÞ þ Ji�j�1ðjκiasÞ
h io

δnm

þ eκih0 �ðsþmωdÞ2 þ jðsþmωdÞðν1 þ κ2i ν2Þ
�
þκi g þ σ

ρ
κ2i

 ��
´ Ji�jð�jκiasÞ þ

jksas
2

�

´ Ji�jþ1ð�jκiasÞ þ Ji�j�1ð�jκiasÞ
h io

δnm

ð18Þ

and

Dim
jn ¼ ω2

dκie
�κih0

2
δnþ1
m þ δn�1

m

� �
Ji�jðjκiasÞ �

jksas
2

�

´ Ji�jþ1ðjκiasÞ þ Ji�j�1ðjκiasÞ
h io

�ω2
dκie

κih0

2
δnþ1
m þ δn�1

m

� �
Ji�jð�jκiasÞ þ

jksas
2

�

´ Ji�jþ1ð�jκiasÞ þ Ji�j�1ð�jκiasÞ
h io

;

ð19Þ

where κi= k+ iks. As in the pendulum array case, the eigenvalue problem in Eq.
(2) follows when we set the growth rate to zero and the driving amplitude to a �

d ,
and we map indices μ 2 Z and ν 2 Z to pairs of indices ðiðμÞ;mðμÞÞ 2 Z2 and
ðjðνÞ; nðνÞÞ 2 Z2 using any convenient bijection from Z to Z2, taking
~Cμν � CiðμÞmðμÞ

jðνÞ nðνÞ , ~Dμν � DiðμÞmðμÞ
jðνÞ nðνÞ , and

~hμ � ĥiðμÞmðμÞ. For the periodic and flat
substrates, the instability boundaries determined by the eigenvalue problem in (2)
agree completely with the boundaries determined directly by finite element
simulations. For the random substrates, the instability boundaries are calculated
directly from the finite element simulations. In all cases, our analysis is focused on
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the first Brillouin zone by setting s= 0 and s= ±jωd/2 to determine the harmonic
and subharmonic instability boundaries, respectively.

For the previously studied case of a flat substrate, the dispersion relation can be
derived by linearizing (11)–(13) with a modal solution ϕ ¼ Φðk; tÞ expðjk � xÞ,
h ¼ Hðk; tÞ expðjk � xÞ, and ζ ¼ Zðk; tÞ expðjk � xÞ of wavenumber k. This results in
the Mathieu equation,

∂2t H ¼ �k tanhðkh0Þ g þ σk2 � adω
2
d sinðωdtÞ

� �
H; ð20Þ

after eliminating Φ and Z while ignoring the phenomenological damping terms.
The dispersion relation ω2 ¼ k g þ σk2

� �
tanh kh0

� �
then follows from Eq. (20) by

setting ad= ωd= 0. The exponential dependence encoded by tanhðkh0Þ in the
homogeneous case suggests that the onset of instabilities can only be significantly
affected by heterogeneous substrates if the minimum thickness hm for the
undisturbed fluid surface satisfies hm≲O(1/k), as confirmed in our modeling. For
the non-flat substrates, the dispersion relation is determined numerically from the
spectrum of Ci0

j0.

Faraday instability experiments. We used a model VG-100-8 Vibration Test
Systems (VTS) shaker to drive the fluid. A Tektronix signal generator (model
AFG1022) was attached to an EMB amplifier (model EB3500PRO) to drive the VTS
shaker. Polylactic acid substrates were printed using a Monoprice Maker Ultimate
3D printer. The fluid domain of the printed substrates measured 4 cm long by 1 cm
wide, and all containers held the same volume of fluid as the container with the flat
substrate, which was 0.5 cm deep. The substrates were affixed with epoxy to a 2.5 cm
thick acrylic plate, which was laser cut for mounting. Another acrylic plate held an
Analog Devices ADXL337 accelerometer with a ± 3g acceleration range. The plates
were stacked with a spacer leaving a gap for the accelerometer. They were then
bolted together onto the VTS shaker, and the accelerometer was connected to a
Sparkfun Redboard (model DEV-13975), which was programmed to fit a sinusoidal
curve to the acceleration in order to extract the driving acceleration amplitude. The
containers were filled to the brim to minimize the boundary effects51,52. The VTS
shaker was leveled so that the gravitational field was normal to the fluid surface. A
FLIR Blackfly S camera (model BFS-U3-32S4M-C) was synchronized with the
driving frequency and used to track the growth of the surface deflection. For each
driving frequency, starting from a small driving voltage (small acceleration in the
VTS shaker) with a stable flat surface, the voltage of the signal generator was
increased in 10 mV increments, allowing approximately 5 s to determine whether
the flat surface would become unstable before increasing the voltage. When the
instability appeared, the acceleration amplitude was recorded as the instability
boundary for that frequency. The critical acceleration amplitude α �

d was converted
to the critical driving amplitude a �

d using a �
d ¼ α �

d =ω
2
d . Frequencies were swept

from 13Hz to 30 Hz in increments of 0.5 Hz, then back down to 13 Hz again to
collect a second data point. This process was repeated twice for each substrate,
leading to 4 data samples at each frequency.

Data availability
The data recorded during the Faraday instability experiments and shown in Fig. 4 are
available from our GitHub repository: https://github.com/znicolaou/faraday. The other
data that support the findings of this study are computer generated (see code availability)
and are available from the corresponding author upon reasonable request.

Code availability
The source code for determining instability boundaries, dispersion relations (including
the ones not analytically expressed above), and gap soliton solutions is available from our
GitHub repository: https://github.com/znicolaou/faraday.
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